A study of neural network based inverse kinematics solution for a three-joint robot

نویسندگان

  • Rasit Köker
  • Cemil Öz
  • Tarik Çakar
  • Hüseyin Ekiz
چکیده

A neural network based inverse kinematics solution of a robotic manipulator is presented in this paper. Inverse kinematics problem is generally more complex for robotic manipulators. Many traditional solutions such as geometric, iterative and algebraic are inadequate if the joint structure of the manipulator is more complex. In this study, a three-joint robotic manipulator simulation software, developed in our previous studies, is used. Firstly, we have generated many initial and final points in the work volume of the robotic manipulator by using cubic trajectory planning. Then, all of the angles according to the real-world coordinates (x, y, z) are recorded in a file named as training set of neural network. Lastly, we have used a designed neural network to solve the inverse kinematics problem. The designed neural network has given the correct angles according to the given (x, y, z) cartesian coordinates. The online working feature of neural network makes it very successful and popular in this solution. © 2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinematic Synthesis of Parallel Manipulator via Neural Network Approach

In this research, Artificial Neural Networks (ANNs) have been used as a powerful tool to solve the inverse kinematic equations of a parallel robot. For this purpose, we have developed the kinematic equations of a Tricept parallel kinematic mechanism with two rotational and one translational degrees of freedom (DoF). Using the analytical method, the inverse kinematic equations are solved for spe...

متن کامل

Application of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error

Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...

متن کامل

A neural network-based methodology for inverse kinematics of a multi-finger robotic hand for gripping

Robotic grasping and manipulation require controlling the gripper movement through different points in its work volume, necessitating inverse kinematics computations to determine joint angles. In the present work, a novel methodology, based on a radial basis function neural network, has been proposed for the inverse kinematics solution and a genetic algorithm-based approach for optimising the n...

متن کامل

A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization

The solution of the inverse kinematics problem is fundamental in robot control. Many traditional inverse kinematics problem solutions, such as the geometric, iterative, and algebraic approaches, are inadequate for redundant robots. Recently, much attention has been focused on a neural-network-based inverse kinematics problem solution in robotics. However, the precision of the result obtained fr...

متن کامل

Design, Modeling, Implementation and Experimental Analysis of 6R Robot (TECHNICAL NOTE)

Design, modeling, manufacturing and experimental analysis of a six degree freedom robot, suitable for industrial applications, has been described in this paper. The robot was designed on the assumption that, each joint has an independent DC motor actuator, with gear reduction and measuring sensor for angular joint position. Mechanical design of the robot was done using Mechanical Desktop and ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotics and Autonomous Systems

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2004